As the world grapples with the COVID-19 pandemic, organizations are trying to find the best paths forward. National, state, and local governments are making and updating social distancing policies. Health systems are mapping out staffing and equipment requirements to handle future waves of patients. Businesses are modifying operations and investments to accommodate extraordinary levels of uncertainty. While high-level case and fatality statistics offer useful context, they often fail to provide enough specificity to inform real-time decisions and policy interventions.
Epistemix delivered model-derived insights despite the early state of the science of COVID-19 disease and incomplete data from fledgling reporting systems. We reached a number of surprising conclusions, like how reopening PNC Park for a baseball game accelerated the epidemic most dramatically under moderate social distancing conditions because it pushed the growth rate over the exponential threshold of R0=1. These results provide the specificity required to compare real policy interventions and inform crucial operational decisions. Moreover, we can use the same analytical approach to forecast the effects of any large social gathering—protests, rallies, celebrations—for any county in the United States, simulating the implications of the difficult choices leaders face.